Grid search to optimise hyperparameters for FUN
gridsearch(x, y, searchspace, FUN, nfolds = 5, nrepcv = 2, ...)
matrix
/data.frame
, feature matrix, see ranger()
for
details.
numeric
/factor
, classification labels, see ranger()
for
details.
data.frame
, hyperparameters to tune. Column names have
to match the argument names of FUN
.
function
function to optimize.
integer(1)
number of cross validation folds.
integer(1)
number of repeats.
further arguments passed to FUN
data.frame
with tested hyperparameters and metric
iris <- subset(iris, Species != "setosa")
searchspace <- expand.grid(
mtry = c(2, 3),
num.trees = c(500, 1000)
)
## nfolds and nrepcv are too low for real world applications, and are just
## used for demonstration and to keep the run time of the examples low
gs_rusranger(
iris[-5], as.numeric(iris$Species == "versicolor"),
searchspace = searchspace, nfolds = 3, nrepcv = 1
)
#> mtry num.trees Min Q1 Median Q3 Max
#> 1 2 500 0.00781250 0.00781250 0.00781250 0.00781250 0.00781250
#> 2 3 500 0.00390625 0.00390625 0.00390625 0.00390625 0.00390625
#> 3 2 1000 0.01384083 0.01384083 0.01384083 0.01384083 0.01384083
#> 4 3 1000 0.02249135 0.02249135 0.02249135 0.02249135 0.02249135