Runs a repeated cross validation for rusranger()
.
The cross validation optimises the AUC.
rcv_rusranger(x, y, nfolds = 5, nrepcv = 2, ...)
matrix
/data.frame
, feature matrix, see ranger()
for
details.
numeric
/factor
, classification labels, see ranger()
for
details.
integer(1)
number of cross validation folds.
integer(1)
number of repeats.
further arguments passed to cv_rusranger()
.
double(5)
, minimal, 25 % quartiel, median, 75 % quartile and
maximal AUC across the repeated cross validations.
iris <- subset(iris, Species != "setosa")
rcv_rusranger(
iris[-5], as.numeric(iris$Species == "versicolor"),
nfolds = 3, nrepcv = 3
)
#> Min Q1 Median Q3 Max
#> 0.000000000 0.005190311 0.010380623 0.016909061 0.023437500