Runs a repeated cross validation for rusranger().
The cross validation optimises the AUC.
rcv_rusranger(x, y, nfolds = 5, nrepcv = 2, ...)matrix/data.frame, feature matrix, see ranger() for
details.
numeric/factor, classification labels, see ranger() for
details.
integer(1) number of cross validation folds.
integer(1) number of repeats.
further arguments passed to cv_rusranger().
double(5), minimal, 25 % quartiel, median, 75 % quartile and
maximal AUC across the repeated cross validations.
iris <- subset(iris, Species != "setosa")
rcv_rusranger(
iris[-5], as.numeric(iris$Species == "versicolor"),
nfolds = 3, nrepcv = 3
)
#> Min Q1 Median Q3 Max
#> 0.000000000 0.005190311 0.010380623 0.016909061 0.023437500