Last updated: 2022-11-30

Checks: 7 0

Knit directory: ampel-leipzig-meld/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210604) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e1aebf7. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    _targets/
    Ignored:    analysis/article.md
    Ignored:    container/
    Ignored:    logs/
    Ignored:    scripts/R.sh

Untracked files:
    Untracked:  analysis/bibliography/bibliography.bib.sav.tmp
    Untracked:  submission/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/benchmarks.Rmd) and HTML (docs/benchmarks.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 65d58c4 Sebastian Gibb 2022-07-18 chore: rebuild site
html fb43d01 Sebastian Gibb 2022-06-19 chore: rebuild site
html ebe29cf Sebastian Gibb 2022-06-16 chore: rebuild site
html 8035219 Sebastian Gibb 2022-06-15 chore: rebuild site
html d3e9462 Sebastian Gibb 2022-06-06 chore: rebuild site
html b20484a Sebastian Gibb 2022-06-06 chore: rebuild site
Rmd baac1e4 Sebastian Gibb 2022-06-06 fix: bootstraping elastic net
html 983ec69 Sebastian Gibb 2022-03-17 chore: rebuild site
Rmd 057f935 Sebastian Gibb 2022-03-17 feat: add elastic net bootstrap and timeROC evaluations
Rmd d586eff Sebastian Gibb 2022-02-10 feat: add benchmark table and plots
html 373e7d8 Sebastian Gibb 2021-10-20 chore: rebuild site
html df8964f Sebastian Gibb 2021-10-15 chore: rebuild site
Rmd 0ac3045 Sebastian Gibb 2021-10-15 refactor: reset figure width
Rmd 173a1ca Sebastian Gibb 2021-10-14 refactor: increase figure width
Rmd 1e08cb2 Sebastian Gibb 2021-09-21 fix: load bmrk_aggr and set p.value
Rmd 939fcae Sebastian Gibb 2021-09-20 feat: add benchmark comparison across datasets
Rmd c66640c Sebastian Gibb 2021-09-14 feat: first nnet tests
html c66640c Sebastian Gibb 2021-09-14 feat: first nnet tests
html afa48d9 Sebastian Gibb 2021-08-07 chore: rebuild site
Rmd 4478f6a Sebastian Gibb 2021-08-02 Revert "fix: working directory for targets"
Rmd cac14f6 Sebastian Gibb 2021-08-02 fix: working directory for targets
Rmd 3957af7 Sebastian Gibb 2021-08-02 refactor: move common yaml headers into _site.yml
html 3aab3e1 Sebastian Gibb 2021-08-01 chore: rebuild site
html 3810a79 Sebastian Gibb 2021-07-15 chore: rebuild site
Rmd 1dc8b12 Sebastian Gibb 2021-07-14 feat: add mlr benchmarks

library("targets")
library("data.table")
library("mlr3")
library("mlr3misc")
library("mlr3proba")
library("mlr3viz")
library("viridis")
library("ggplot2")
tar_load(bmrk_results)
tar_load(bmrk_aggr)

agg <- bmrk_results$aggregate(msr("surv.cindex", id = "harrell"))
agg[, `:=`
    (nr = NULL, resample_result = NULL, resampling_id = NULL, iters = NULL)
]
setorder(agg, task_id, -harrell)
p.value <- 0.05

1 Overview

1.1 Table

lapply(split(agg, agg$task_id), knitr::kable, digits = 4)

$ln_eldd

task_id learner_id harrell
ln_eldd scale.svmregression.tuned 0.9210
ln_eldd scale.ridge.tuned 0.9208
ln_eldd scale.elasticnet.tuned 0.9188
ln_eldd scale.penridge.tuned 0.9178
ln_eldd scale.penlasso.tuned 0.9159
ln_eldd penridge.tuned 0.9152
ln_eldd ridge.tuned 0.9145
ln_eldd scale.ranger.tuned 0.9110
ln_eldd ranger.tuned 0.9104
ln_eldd scale.surv.rfsrc.tuned 0.9077
ln_eldd elasticnet.tuned 0.9052
ln_eldd surv.rfsrc.tuned 0.9046
ln_eldd penlasso.tuned 0.8991
ln_eldd scale.lasso.tuned 0.8677
ln_eldd lasso.tuned 0.8616
ln_eldd scale.cox 0.8580
ln_eldd cox 0.8578
ln_eldd scale.surv.xgboost.tuned 0.8413
ln_eldd scale.deepsurv.tuned 0.8399
ln_eldd surv.xgboost.tuned 0.8357
ln_eldd scale.coxtime.tuned 0.8346
ln_eldd scale.svmvanbelle1.tuned 0.8231
ln_eldd svmvanbelle1.tuned 0.7927
ln_eldd coxtime.tuned 0.7720
ln_eldd deepsurv.tuned 0.7438
ln_eldd svmregression.tuned 0.5695

$zlog_eldd

task_id learner_id harrell
zlog_eldd scale.ridge.tuned 0.9213
zlog_eldd scale.svmregression.tuned 0.9191
zlog_eldd scale.penridge.tuned 0.9172
zlog_eldd scale.elasticnet.tuned 0.9168
zlog_eldd ridge.tuned 0.9148
zlog_eldd scale.ranger.tuned 0.9141
zlog_eldd scale.penlasso.tuned 0.9134
zlog_eldd elasticnet.tuned 0.9134
zlog_eldd ranger.tuned 0.9126
zlog_eldd penlasso.tuned 0.9112
zlog_eldd penridge.tuned 0.9091
zlog_eldd lasso.tuned 0.9087
zlog_eldd scale.surv.rfsrc.tuned 0.9079
zlog_eldd surv.rfsrc.tuned 0.9060
zlog_eldd scale.cox 0.8754
zlog_eldd cox 0.8715
zlog_eldd scale.lasso.tuned 0.8412
zlog_eldd deepsurv.tuned 0.8333
zlog_eldd scale.surv.xgboost.tuned 0.8317
zlog_eldd scale.coxtime.tuned 0.8308
zlog_eldd surv.xgboost.tuned 0.8279
zlog_eldd scale.svmvanbelle1.tuned 0.8254
zlog_eldd svmvanbelle1.tuned 0.8233
zlog_eldd coxtime.tuned 0.8185
zlog_eldd scale.deepsurv.tuned 0.8169
zlog_eldd svmregression.tuned 0.8091

1.2 Boxplots

m <- agg[, max(harrell), by = task_id]
autoplot(bmrk_results) +
    geom_boxplot(aes(fill = learner_id)) +
    geom_jitter(position = position_jitter(0.2)) +
    scale_fill_viridis(discrete = TRUE) +
    geom_hline(
        aes(yintercept = V1), linetype = "dashed", color = "red", data = m
    )

Version Author Date
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15
b20484a Sebastian Gibb 2022-06-06
983ec69 Sebastian Gibb 2022-03-17
373e7d8 Sebastian Gibb 2021-10-20
df8964f Sebastian Gibb 2021-10-15
c66640c Sebastian Gibb 2021-09-14
afa48d9 Sebastian Gibb 2021-08-07
3810a79 Sebastian Gibb 2021-07-15
autoplot(
    bmrk_results,
    measure = msr("surv.cindex", id = "uno", weight_meth = "G2")) +
    geom_boxplot(aes(fill = learner_id)) +
    geom_jitter(position = position_jitter(0.2)) +
    scale_fill_viridis(discrete = TRUE)
Warning: Removed 135 rows containing non-finite values (stat_boxplot).
Removed 135 rows containing non-finite values (stat_boxplot).
Warning: Removed 135 rows containing missing values (geom_point).

Version Author Date
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15
b20484a Sebastian Gibb 2022-06-06
983ec69 Sebastian Gibb 2022-03-17

2 Aggregated performance

Aggregated performance across all 2 datasets.

autoplot(bmrk_aggr, type = "box", meas = "harrell") +
    geom_boxplot(aes(fill = learner_id)) +
    geom_jitter(position = position_jitter(0.2)) +
    scale_fill_viridis(discrete = TRUE)

Version Author Date
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15
b20484a Sebastian Gibb 2022-06-06
983ec69 Sebastian Gibb 2022-03-17
373e7d8 Sebastian Gibb 2021-10-20
df8964f Sebastian Gibb 2021-10-15
autoplot(bmrk_aggr, type = "box", meas = "uno") +
    geom_boxplot(aes(fill = learner_id)) +
    geom_jitter(position = position_jitter(0.2)) +
    scale_fill_viridis(discrete = TRUE)
Warning: Removed 49 rows containing non-finite values (stat_boxplot).
Removed 49 rows containing non-finite values (stat_boxplot).
Warning: Removed 49 rows containing missing values (geom_point).

Version Author Date
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15
b20484a Sebastian Gibb 2022-06-06
983ec69 Sebastian Gibb 2022-03-17

3 Pairwise comparison

p-value is set to 0.05 (otherwise an error is thrown because of insignificant results).

autoplot(
    bmrk_aggr, type = "fn", meas = "harrell", p.value = p.value,
    col = palette.colors(2L)[2L]
)

Version Author Date
983ec69 Sebastian Gibb 2022-03-17
df8964f Sebastian Gibb 2021-10-15

4 Critical difference

p-value is set to 0.05 (otherwise an error is thrown because of insignificant results).

autoplot(
    bmrk_aggr, type = "cd", meas = "harrell", style = 2, p.value = p.value,
    minimize = FALSE
) + scale_color_viridis(discrete = TRUE)

Version Author Date
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15
b20484a Sebastian Gibb 2022-06-06
983ec69 Sebastian Gibb 2022-03-17
373e7d8 Sebastian Gibb 2021-10-20
df8964f Sebastian Gibb 2021-10-15

sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-unknown-linux-gnu (64-bit)

Matrix products: default
BLAS/LAPACK: /gnu/store/ras6dprsw3wm3swk23jjp8ww5dwxj333-openblas-0.3.18/lib/libopenblasp-r0.3.18.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] ggplot2_3.3.6     viridis_0.6.2     viridisLite_0.4.0 mlr3viz_0.5.9    
[5] mlr3proba_0.4.11  mlr3misc_0.10.0   mlr3_0.13.3       data.table_1.14.2
[9] targets_0.12.1   

loaded via a namespace (and not attached):
 [1] fs_1.5.2                 bbotk_0.5.3              rprojroot_2.0.3         
 [4] mlr3pipelines_0.4.1      tools_4.2.0              backports_1.4.1         
 [7] bslib_0.3.1              utf8_1.2.2               R6_2.5.1                
[10] colorspace_2.0-3         withr_2.5.0              tidyselect_1.1.2        
[13] gridExtra_2.3            processx_3.5.3           compiler_4.2.0          
[16] git2r_0.30.1             cli_3.3.0                ooplah_0.2.0            
[19] lgr_0.4.3                labeling_0.4.2           bookdown_0.26           
[22] sass_0.4.1               BWStest_0.2.2            scales_1.2.0            
[25] checkmate_2.1.0          mvtnorm_1.1-3            callr_3.7.0             
[28] multcompView_0.1-8       palmerpenguins_0.1.0     mlr3tuning_0.13.1       
[31] stringr_1.4.0            digest_0.6.29            mlr3extralearners_0.5.37
[34] rmarkdown_2.14           param6_0.2.4             paradox_0.9.0           
[37] set6_0.2.4               pkgconfig_2.0.3          htmltools_0.5.2         
[40] parallelly_1.31.1        mlr3benchmark_0.1.3      fastmap_1.1.0           
[43] highr_0.9                rlang_1.0.2              SuppDists_1.1-9.7       
[46] jquerylib_0.1.4          generics_0.1.2           farver_2.1.0            
[49] jsonlite_1.8.0           dplyr_1.0.9              magrittr_2.0.3          
[52] Matrix_1.4-1             Rcpp_1.0.8.3             munsell_0.5.0           
[55] fansi_1.0.3              lifecycle_1.0.1          stringi_1.7.6           
[58] whisker_0.4              yaml_2.3.5               MASS_7.3-57             
[61] grid_4.2.0               parallel_4.2.0           dictionar6_0.1.3        
[64] listenv_0.8.0            promises_1.2.0.1         crayon_1.5.1            
[67] lattice_0.20-45          PMCMRplus_1.9.4          splines_4.2.0           
[70] knitr_1.39               ps_1.7.0                 pillar_1.7.0            
[73] igraph_1.3.1             uuid_1.1-0               base64url_1.4           
[76] kSamples_1.2-9           codetools_0.2-18         glue_1.6.2              
[79] evaluate_0.15            vctrs_0.4.1              httpuv_1.6.5            
[82] distr6_1.6.9             gtable_0.3.0             purrr_0.3.4             
[85] future_1.26.1            cachem_1.0.6             xfun_0.31               
[88] Rmpfr_0.8-7              later_1.3.0              survival_3.3-1          
[91] tibble_3.1.7             memoise_2.0.1            workflowr_1.7.0         
[94] gmp_0.6-5                globals_0.15.0           ellipsis_0.3.2